Algebra Qualifying Exam (January 2018)

1. (10 points) Suppose G is an infinite group such that some noncentral element x has a finite number of conjugates. Show that G is not simple.
2. Suppose G is a group of order $455=5 \cdot 7 \cdot 13$.
(a) (5 points) Show that G has unique Sylow 7 -subgroup P_{7} and a unique Sylow 13-subgroup P_{13}.
(b) (5 points) Show that P_{7} and P_{13} are contained in the center $Z(G)$.
(c) (5 points) Conclude that G is abelian.
3. (10 points) Show that $\mathbb{Z}[\sqrt{-7}]$ is not a UFD.
4. (10 points) Suppose R is a ring with identity and M_{1} and M_{2} are left R-modules. Show that M_{1} and M_{2} are projective if and only if $M_{1} \oplus M_{2}$ is projective.
5. (10 points) Let F be a field. We say a matrix $A \in M_{n}(F)$ is idempotent if it satisfies the condition $A^{2}=A$. Show that two idempotent matrices $A_{1}, A_{2} \in M_{n}(F)$ are similar if and only if they have the same rank.
6. Let R be a commutative ring (with identity). Recall that an element $r \in R$ is called nilpotent if $r^{n}=0_{R}$ for some positive integer n.
(a) (6 points) Suppose $a \in R$ is an element that is not nilpotent, and consider the multiplicative set

$$
S=\left\{a^{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}
$$

Show that the localization $S^{-1} R$ is a nonzero ring.
(b) (6 points) If $a \in R$ is not nilpotent, show that there exists a prime ideal $P \subset R$ such that $a \notin P$. (Hint: Take S as in part (a) and consider the localization map $f: R \rightarrow S^{-1} R$.)
(c) (3 points) Show that the set of nilpotent elements of R coincides with the intersection of all prime ideals of R.

