Algebra Qualifying Exam (August 2018)

1. Let G be a group.

(a) (5 points) Recall that for any $g \in G$, we have the inner automorphism $\iota_g \colon G \to G$ defined by $\iota_g(x) = gxg^{-1}$, and

$$\operatorname{Inn}(G) = \{\iota_g \mid g \in G\} \subseteq \operatorname{Aut}(G)$$

is called the group of inner automorphisms of G. Show that $Inn(G) \simeq G/Z(G)$, where Z(G) is the center of G.

(b) (3 points) If G is abelian, show that the map $\varepsilon \colon G \to G, x \mapsto x^{-1}$, is an automorphism of G.

(c) (6 points) Show that if A is a finite abelian group of exponent 2 (i.e. every element $x \in A$ satisfies $x^2 = e$) and |A| > 2, then A has nontrivial automorphisms.

(d) (6 points) Suppose G is a finite group. Show that if G has no nontrivial automorphisms, then G has order 1 or 2.

2. Suppose G is a group of order 160 that contains two distinct subgroups H_1 and H_2 of order 80. (a) (5 points) Show that $H_1 \cap H_2 \subset G$ is a normal subgroup of order 40. (Hint: Recall that $[G: H_1 \cap H_2] = [G: H_1][H_1: H_1 \cap H_2]$ — you may use this fact without proof.)

(b)(10 points) Show that G contains a normal subgroup of order 5.

- 3. (a) (6 points) Show that the ideal $I = (x^2 + 2, x^2 + 7)$ is maximal in $\mathbb{Z}[x]$.
 - (b) (6 points) Show that the polynomial $y^3 + x^2y^2 + x^3y + x$ is irreducible in $\mathbb{Z}[x, y]$.

4. (a) (10 points) Consider the polynomial $f(x) = x^9 - x \in \mathbb{F}_3[x]$, where \mathbb{F}_3 is the field of 3 elements. Determine the number of irreducible factors and the degree of each factor in the irreducible factorization of f(x) in $\mathbb{F}_3[x]$. You do not need to write down the factorization explicitly, but please provide full justification for your reasoning.

(b) (5 points) Let $K = \mathbb{F}_q$ be the finite field of q elements. Give an example of a polynomial $f(x, y) \in K[x, y]$ in which both variables actually appear, for which the equation f(x, y) = 0 has no solutions in $K \times K$. Please explain your reasoning.

5. Let R be a commutative ring with identity.

(a) (5 points) Suppose $P \subset R$ is a prime ideal and $I, J \subset R$ are ideals such that $P = I \cap J$. Show that P = I or P = J.

(b) (5 points) Recall that an *R*-module *M* is said to be *indecomposable* if *M* cannot be written as $M_1 \oplus M_2$ for any nonzero submodules M_1 and M_2 . Use part (a) to show that if $P \subset R$ is a prime ideal, then R/P is an indecomposable *R*-module.

6. (15 points) Let F be a field and $A \in M_n(F)$ be an $n \times n$ -matrix over F. Show that A is conjugate to its transpose A^t .

7. Let $p \in \mathbb{Z}$ be a prime and consider the polynomial $f(x) = x^p - 2 \in \mathbb{Q}[x]$. Denote by L/\mathbb{Q} the splitting field of f(x) over \mathbb{Q} (in some fixed algebraic closure of \mathbb{Q}).

- (a) (3 points) Show that f(x) is irreducible in $\mathbb{Q}[x]$.
- (b) (6 points) Determine the degree $[L:\mathbb{Q}]$.
- (c) (6 points) Describe the elements of the Galois group $\operatorname{Gal}(L/\mathbb{Q})$.

8. Let E/K is a Galois extension of fields of degree $[E:K] = 245 = 5 \cdot 7^2$. Show that

(a) (6 points) There exist intermediate subfields $K \subset L \subset E$ and $K \subset M \subset E$ such that [L:K] = 5 and [M:K] = 49.

- (b) (6 points) The extensions L/K and M/K from part (a) are Galois.
- (c) (6 points) The Galois group Gal(E/K) is abelian.

9. Let k be a field and consider the ring $R = k[x]/(x^2)$. Write $R = k[\varepsilon]$, where $\varepsilon^2 = 0$. (a) (6 points) Show that

$$\cdots \xrightarrow{\times \varepsilon} R \xrightarrow{\times \varepsilon} R \xrightarrow{\pi} k \to 0,$$

where $\pi: R \to k$ is the natural surjection and the remaining maps are multiplication by ε , is a projective resolution of k as an R-module.

(b) (7 points) Show that $\operatorname{Hom}_{R-mod}(R,k) \simeq k$.

(c) (7 points) Using parts (a) and (b), show that $\operatorname{Ext}_{R}^{i}(k,k) \simeq k$ for all $i \geq 0$.