Algebra Qualifying Exam (August 2018)

1. Let G be a group.
(a) (5 points) Recall that for any $g \in G$, we have the inner automorphism $\iota_{g}: G \rightarrow G$ defined by $\iota_{g}(x)=g x g^{-1}$, and

$$
\operatorname{Inn}(G)=\left\{\iota_{g} \mid g \in G\right\} \subseteq \operatorname{Aut}(G)
$$

is called the group of inner automorphisms of G. Show that $\operatorname{Inn}(G) \simeq G / Z(G)$, where $Z(G)$ is the center of G.
(b) (3 points) If G is abelian, show that the map $\varepsilon: G \rightarrow G, x \mapsto x^{-1}$, is an automorphism of G.
(c) (6 points) Show that if A is a finite abelian group of exponent 2 (i.e. every element $x \in A$ satisfies $\left.x^{2}=e\right)$ and $|A|>2$, then A has nontrivial automorphisms.
(d) (6 points) Suppose G is a finite group. Show that if G has no nontrivial automorphisms, then G has order 1 or 2 .
2. Suppose G is a group of order 160 that contains two distinct subgroups H_{1} and H_{2} of order 80 .
(a) (5 points) Show that $H_{1} \cap H_{2} \subset G$ is a normal subgroup of order 40 .
(Hint: Recall that [G: $\left.H_{1} \cap H_{2}\right]=\left[G: H_{1}\right]\left[H_{1}: H_{1} \cap H_{2}\right]$ - you may use this fact without proof.)
(b) (10 points) Show that G contains a normal subgroup of order 5.
3. (a) (6 points) Show that the ideal $I=\left(x^{2}+2, x^{2}+7\right)$ is maximal in $\mathbb{Z}[x]$.
(b) (6 points) Show that the polynomial $y^{3}+x^{2} y^{2}+x^{3} y+x$ is irreducible in $\mathbb{Z}[x, y]$.
4. (a) (10 points) Consider the polynomial $f(x)=x^{9}-x \in \mathbb{F}_{3}[x]$, where \mathbb{F}_{3} is the field of 3 elements. Determine the number of irreducible factors and the degree of each factor in the irreducible factorization of $f(x)$ in $\mathbb{F}_{3}[x]$. You do not need to write down the factorization explicitly, but please provide full justification for your reasoning.
(b) (5 points) Let $K=\mathbb{F}_{q}$ be the finite field of q elements. Give an example of a polynomial $f(x, y) \in$ $K[x, y]$ in which both variables actually appear, for which the equation $f(x, y)=0$ has no solutions in $K \times K$. Please explain your reasoning.
5. Let R be a commutative ring with identity.
(a) (5 points) Suppose $P \subset R$ is a prime ideal and $I, J \subset R$ are ideals such that $P=I \cap J$. Show that $P=I$ or $P=J$.
(b) (5 points) Recall that an R-module M is said to be indecomposable if M cannot be written as $M_{1} \oplus M_{2}$ for any nonzero submodules M_{1} and M_{2}. Use part (a) to show that if $P \subset R$ is a prime ideal, then R / P is an indecomposable R-module.
6. (15 points) Let F be a field and $A \in M_{n}(F)$ be an $n \times n$-matrix over F. Show that A is conjugate to its transpose A^{t}.
7. Let $p \in \mathbb{Z}$ be a prime and consider the polynomial $f(x)=x^{p}-2 \in \mathbb{Q}[x]$. Denote by L / \mathbb{Q} the splitting field of $f(x)$ over \mathbb{Q} (in some fixed algebraic closure of \mathbb{Q}).
(a) (3 points) Show that $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) (6 points) Determine the degree $[L: \mathbb{Q}]$.
(c) $(6$ points $)$ Describe the elements of the Galois $\operatorname{group} \operatorname{Gal}(L / \mathbb{Q})$.
8. Let E / K is a Galois extension of fields of degree $[E: K]=245=5 \cdot 7^{2}$. Show that
(a) (6 points) There exist intermediate subfields $K \subset L \subset E$ and $K \subset M \subset E$ such that $[L: K]=5$ and $[M: K]=49$.
(b) (6 points) The extensions L / K and M / K from part (a) are Galois.
(c) (6 points) The Galois group $\operatorname{Gal}(E / K)$ is abelian.
9. Let k be a field and consider the ring $R=k[x] /\left(x^{2}\right)$. Write $R=k[\varepsilon]$, where $\varepsilon^{2}=0$.
(a) (6 points) Show that

$$
\cdots \xrightarrow{\times \varepsilon} R \xrightarrow{\times \varepsilon} R \xrightarrow{\pi} k \rightarrow 0,
$$

where $\pi: R \rightarrow k$ is the natural surjection and the remaining maps are multiplication by ε, is a projective resolution of k as an R-module.
(b) (7 points) Show that $\operatorname{Hom}_{R-\bmod }(R, k) \simeq k$.
(c) (7 points) Using parts (a) and (b), show that $\operatorname{Ext}_{R}^{i}(k, k) \simeq k$ for all $i \geq 0$.

