ALGEBRA I QUALIFYING EXAM JANUARY 2024

(1) Let G be a non-trivial group such that G contains a proper subgroup H which contains every proper subgroup of G. Show that G is cyclic of order p^{i} for some prime p.
(2) Let G be a free abelian group of rank r. Show that G has only finitely many subgroups of a given finite index n.
(3) (a) Suppose that R is a commutative ring with identity. Suppose that $a \in R$ is not nilpotent (meaning there is no integer n such that $a^{n}=0$). Prove that there is a prime ideal in R that does not contain a.
Hint: Consider the set of ideals in R that do not contain any power of a
(b) Use the above to show that the set of all nilpotent elements of R is the intersection of all prime ideals of R.
(4) Let I be an ideal of a commutative ring R and $a \in R$. Consider the ideals $I+R a$ and $(I: a)=\{x \in R \mid a x \in I\}$.
(a) Show that $(I+R a) / R a \cong I / a(I: a)$.
(b) Use the above to show that if $I+R a$ and $(I: a)$ are both finitely-generated, then I is finitely-generated.
Hint: Five Lemma
(5) Let R be a PID and K its field of fractions.
(a) Show that any subring L of $M_{n}(K)$ which is finitely-generated as a (unitary) R-module, must be free as an R-module.
(b) A subset S of K has a common denominator in R when there is a nonzero $r \in R$ such that $r S \subset R$.
Let H be a subgroup of $G L_{n}(K)$ whose matrix entries have a common denominator in R.
(i) Consider the subset of K^{n} given by $M=\sum_{h \in H} h\left(R^{n}\right) \subset K^{n}$, which consists of finite sums of vectors belonging to some $h\left(R^{n}\right)=\left\{h\left(r_{1}, \ldots, r_{n}\right) \mid r_{1}, \ldots, r_{n} \in R\right\}$. Prove that $M \cong R^{n}$ as an R-module.
(ii) Use Part (i) to show that H is conjugate to a subgroup of $G L_{n}(K)$ with matrix entries in R.
Hint: If e_{1}, \ldots, e_{n} is the standard basis of R^{n}, then any matrix A in $G L_{n}(K)$ has i-th column given by $A\left(e_{i}\right) \subset K^{n}$.
(6) For commutative rings A, B with identity, a ring homomorphism $A \rightarrow B$, and non-zero A-modules M, N consider the canonical map

$$
B \otimes_{A} \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} M, B \otimes_{A} N\right)
$$

given by

$$
b \otimes f \mapsto(x \otimes m \mapsto b x \otimes f(m)) .
$$

(a) Find examples of $A, B, A \rightarrow B, M$, and N such that the above map is the zero map.
(b) Prove that if M is a finitely-generated projective A-module, then the above map is an isomorphism.

