Qualifying Exam Complex Analysis August, 2018

1. Let a, b, c be three distinct points in \mathbb{C}. Show that a necessary and sufficient condition for them to form (vertices of) an equilateral triangle is that

$$
a^{2}+b^{2}+c^{2}=a b+b c+c a .
$$

2. True or false: if a function f is continuous on $\{z \in \mathbb{C}:|z| \leq 1\}$ and analytic on $\{z \in \mathbb{C}:|z|<1\}$, then there is $\varepsilon>0$ such that f extends to a function analytic on $\{z \in \mathbb{C}:|z|<1+\varepsilon\}$? Give a proof or counterexample (with explanation).
3. Let f be a nonconstant entire function. Prove that $f(\mathbb{C})$ is dense in \mathbb{C}.
4. Let $|a|<1$ be a complex number. Evaluate

$$
\int_{0}^{2 \pi} \frac{d \theta}{\left|e^{i \theta}-a\right|^{2}}
$$

5. Find a one-to-one conformal map of the semi-disc $\{z \in \mathbb{C}: \operatorname{Im} z>0,|z|<1\}$ onto the half plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$.
