Geometry Qualifying Examination

Jan 4, 2024
Instructions: Solve 5 out of the 6 problems. You must justify all your claims either by direct arguments or by referring to well known and basic theorems. Indicate clearly which 5 problems you would like us to grade.

Problem 1. Let M be a nonempty smooth n-manifold, and suppose $n \geq 1$.
(1) Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.
(2) Suppose $A, B \subset M$ are disjoint closed subsets. Prove that there exists $f \in C^{\infty}(M)$ s.t. $\left.f\right|_{A} \equiv 0$ and $\left.f\right|_{B} \equiv 1$.
(3) Suppose N is another smooth manifold and $F: M \rightarrow N$ is a continuous map. Prove that F is smooth if $F^{*}\left(C^{\infty}(N)\right) \subset C^{\infty}(M)$.

Problem 2. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $F(x, y, z)=x^{2}+x y-2 y^{2}+z^{4}$.
(1) Prove that the level set $\Sigma:=F^{-1}\{1\}$ is a submanifold of \mathbb{R}^{3}.
(2) Is Σ compact? Prove your claim.
(3) Find the critical points of the function $f(x, y, z)=x$ on Σ.

Problem 3. Let M be a smooth n-manifold.
(1) What is a smooth vector filed on M ?
(2) Suppose (U, x) and (V, y) are two charts on M with $U \cap V \neq \emptyset$. A vector field X on M has the local expression $\sum_{i} a^{i} \frac{\partial}{\partial x^{i}}$ on U and $\sum_{i} b^{i} \frac{\partial}{\partial y^{i}}$ on V. Find a formula for a^{i} in terms of b^{j} on $U \cap V$.
(3) On the local chart $\left(\mathbb{S}^{2} \backslash\{N\}, x\right)$ by the stereographic projection from the north pole (recall $\left.x=\frac{\left(\xi^{1}, \xi^{2}\right)}{1-\xi^{3}}\right), \frac{\partial}{\partial x^{1}}$ defines a vector field on $\mathbb{S}^{2} \backslash\{N\}$. Is it the local expression of a smooth vector field X on \mathbb{S}^{2} ? If yes, what is the value of X at the north pole? Justify your answers.

Problem 4. Let X be a smooth vector field on a smooth manifold M.
(1) If $c: I \rightarrow M$ is a nonconstant integral curve, show that it is an immersion.
(2) If an integral curve $c: \mathbb{R} \rightarrow M$ is not injective, show that it is periodic, i.e. there exists $T>0$ s.t. $c(t+T)=c(t)$, for all $t \in \mathbb{R}$.
(3) For $X=-x^{2} \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ on \mathbb{R}^{2}, find the maximal integral curve starting at the point $(1,0)$.

Problem 5. Let M be a smooth n-manifold.
(1) What is a Riemannian metric on M ?
(2) Suppose (U, x) and (V, y) are two charts on M with $U \cap V \neq \emptyset$. A Riemannian metric g on M has the local expression $\sum_{i, j} g_{i j} d x^{i} \otimes d x^{j}$ on U and $\sum_{i, j} \widetilde{g}_{i j} d y^{i} \otimes d y^{j}$ on V. Find a formula relating $\left[g_{i j}\right]$ and $\left[\widetilde{g}_{i j}\right]$ on $U \cap V$.
(3) Suppose M is oriented. Show that the n-form

$$
\Omega=\sqrt{\operatorname{det}\left[g_{i j}\right]} d x^{1} \wedge \cdots \wedge d x^{n}
$$

on each positively oriented local chart (U, x) is globally defined on M.

Problem 6. On $\mathbb{R}^{n} \backslash\{0\}$ consider the differential $(n-1)$-form

$$
\omega=|x|^{-n} \sum_{i=1}^{n}(-1)^{i+1} x^{i} d x^{1} \wedge \cdots \wedge \widehat{d x^{i}} \wedge \cdots \wedge d x^{n}
$$

(1) Show that ω is closed.
(2) Let $\iota: \mathbb{S}^{n-1} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ be the inclusion map. Show that $\iota^{*} \omega$ is an orientation form on \mathbb{S}^{n-1}, i.e. it is nowhere zero.
(3) Is ω exact? Justify your claim.

