Geometry Qualifying Examination

Jan 4, 2024

Instructions: Solve 5 out of the 6 problems. You must justify all your claims either by direct arguments or by referring to well known and basic theorems. Indicate clearly which 5 problems you would like us to grade.

Problem 1. Let *M* be a nonempty smooth *n*-manifold, and suppose $n \ge 1$.

- (1) Show that the vector space $C^{\infty}(M)$ is infinite-dimensional.
- (2) Suppose $A, B \subset M$ are disjoint closed subsets. Prove that there exists $f \in C^{\infty}(M)$ s.t. $f|_A \equiv 0$ and $f|_B \equiv 1$.
- (3) Suppose N is another smooth manifold and $F: M \to N$ is a continuous map. Prove that F is smooth if $F^*(C^{\infty}(N)) \subset C^{\infty}(M)$.

Problem 2. Let $F : \mathbb{R}^3 \to \mathbb{R}$ be defined by $F(x, y, z) = x^2 + xy - 2y^2 + z^4$.

- (1) Prove that the level set $\Sigma := F^{-1} \{1\}$ is a submanifold of \mathbb{R}^3 .
- (2) Is Σ compact? Prove your claim.
- (3) Find the critical points of the function f(x, y, z) = x on Σ .

Problem 3. Let M be a smooth n-manifold.

- (1) What is a smooth vector filed on M?
- (2) Suppose (U, x) and (V, y) are two charts on M with $U \cap V \neq \emptyset$. A vector field X on M has the local expression $\sum_i a^i \frac{\partial}{\partial x^i}$ on U and $\sum_i b^i \frac{\partial}{\partial u^i}$ on V. Find a formula for a^i in terms of b^j on $U \cap V$.
- (3) On the local chart (S²\{N}, x) by the stereographic projection from the north pole (recall x = (ξ¹,ξ²)/(1-ξ³), ∂/∂x¹ defines a vector field on S²\{N}. Is it the local expression of a smooth vector field X on S²? If yes, what is the value of X at the north pole? Justify your answers.

Problem 4. Let X be a smooth vector field on a smooth manifold M.

- (1) If $c: I \to M$ is a nonconstant integral curve, show that it is an immersion.
- (2) If an integral curve $c : \mathbb{R} \to M$ is not injective, show that it is periodic, i.e. there exists T > 0 s.t. c(t+T) = c(t), for all $t \in \mathbb{R}$.
- (3) For $X = -x^2 \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{R}^2 , find the maximal integral curve starting at the point (1,0).

Problem 5. Let M be a smooth n-manifold.

- (1) What is a Riemannian metric on M?
- (2) Suppose (U, x) and (V, y) are two charts on M with $U \cap V \neq \emptyset$. A Riemannian metric g on M has the local expression $\sum_{i,j} g_{ij} dx^i \otimes dx^j$ on U and $\sum_{i,j} \tilde{g}_{ij} dy^i \otimes dy^j$ on V. Find a formula relating $[g_{ij}]$ and $[\tilde{g}_{ij}]$ on $U \cap V$.
- (3) Suppose M is oriented. Show that the n-form

$$\Omega = \sqrt{\det \left[g_{ij}\right]} dx^1 \wedge \dots \wedge dx^n$$

on each positively oriented local chart (U, x) is globally defined on M.

Problem 6. On $\mathbb{R}^n \setminus \{0\}$ consider the differential (n-1)-form

$$\omega = |x|^{-n} \sum_{i=1}^{n} (-1)^{i+1} x^i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

- (1) Show that ω is closed.
- (2) Let $\iota : \mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$ be the inclusion map. Show that $\iota^* \omega$ is an orientation form on \mathbb{S}^{n-1} , i.e. it is nowhere zero.
- (3) Is ω exact? Justify your claim.