# MTH 868 Fall 2017: Qualifying Exam 

```
2017-12-14
```

Do six of the eight problems below. Clearly indicate which problems you have solved by ticking the corresponding box in the following table. Do not tick more than six boxes.

| Problem \# | Solved? |
| :---: | :---: |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |

Problem 1. Consider the $n$-dimensional torus $T^{n}=\mathbf{R}^{n} / \mathbf{Z}^{n}$. Given $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, write $[x]$ for the equivalence class of $x$ in $T^{n}$. Given an $n \times n$-matrix with integral entries $A \in \mathbf{Z}^{n \times n}$, define $f_{A}: T^{n} \rightarrow T^{n}$ by

$$
f_{A}([x]):=[A x] .
$$

Prove that for any $\omega \in \Omega^{n}\left(T^{n}\right)$ the following identity holds

$$
\int_{T^{n}} f_{A}^{*} \omega=\operatorname{det}(A) \cdot \int_{T^{n}} \omega
$$

Problem 2. Define $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ by

$$
f(x, y, z):=\binom{x^{2}+y^{2}+z^{2}}{x y-z^{2}}
$$

Prove that $f^{-1}(1,0)$ is a regular submanifold of $\mathbf{R}^{3}$.

Problem 3. Define $\beta \in \Omega^{2}\left(\mathbf{R}^{3} \backslash\{0\}\right)$ by

$$
\beta:=\frac{x \mathrm{~d} y \wedge \mathrm{~d} z+y \mathrm{~d} z \wedge \mathrm{~d} x+z \mathrm{~d} x \wedge \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

(a) Prove that $\beta$ is closed, that is, $\mathrm{d} \beta=0$.
(b) Prove that $\beta$ is not exact, that is, there is no $\alpha \in \Omega^{1}\left(\mathbf{R}^{3} \backslash\{0\}\right)$ such that $\mathrm{d} \alpha=\beta$.

Problem 4. Let $M$ be a compact manifold. Let $E \xrightarrow{\pi} M$ be a vector bundle of rank $r$.
Prove that there is a natural number $n \in \mathrm{~N}$ and sections $s_{1}, \ldots, s_{n} \in \Gamma(E)$ such that, for all points $x \in M$,

$$
\operatorname{span}\left\{s_{1}(x), \ldots, s_{n}(x)\right\}=E_{x} .
$$

Problem 5. On $S^{1}=\mathbf{R} / 2 \pi \mathbf{Z}$, consider the trivial vector bundle $E=S^{1} \times \mathbf{C}$. In this situation: the space of sections $\Gamma(E)$ is $C^{\infty}\left(S^{1}, \mathbf{C}\right)$, the space of $E$-valued 1 -forms $\Omega^{1}(M, E)$ is $\Omega^{1}(M, \mathbf{C})$, and the gauge group $\mathscr{G}(E)$ is $C^{\infty}\left(S^{1}, \mathrm{C}^{*}\right)$.

Given $\lambda \in \mathrm{C}$, define a covariant derivative $\nabla_{\lambda}$ by the following formula

$$
\nabla_{\lambda}:=d+\lambda \cdot \mathrm{d} \theta
$$

Given $\lambda, \tilde{\lambda} \in \mathbf{C}$, prove that $\nabla_{\lambda}$ is gauge equivalent to $\nabla_{\tilde{\lambda}}$ if and only if $\lambda-\tilde{\lambda} \in i \mathbf{Z}$.

Problem 6. Compute the de Rham cohomology of the open subset $U \subset \mathbf{R}^{2}$ given by the grayshaded region below:


Hint: Use the Mayer-Vietoris Theorem and the homotopy invariance of de Rham cohomology.

Problem 7. Consider the circle $S^{1}=\mathbf{R} / 2 \pi \mathbf{Z}$. Given $\theta \in \mathbf{R}$, denote by $[\theta]$ the equivalence class of $\theta$ in $S^{1}$. Define $A: S^{1} \rightarrow \operatorname{Hom}\left(\mathbf{R}^{3}, \mathbf{R}^{2}\right)$ by

$$
A([\theta]):=\left(\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & \sin (\theta)^{2} \\
0 & 0 & 1
\end{array}\right) .
$$

Set

$$
E:=\left\{([\theta], v) \in S^{1} \times \mathbf{R}^{3}: A([\theta]) v=0\right\}
$$

and define $\pi: E \rightarrow S^{1}$ by

$$
\pi([\theta], v):=[\theta] .
$$

Prove that $E \xrightarrow{\pi} S^{1}$ can be given the structure of a vector bundle.

Problem 8. Set

$$
v:=(2,3,5) \in \mathbf{R}^{3}
$$

By slight abuse of notation, we will also use $v$ to denote the corresponding constant vector field on $\mathbf{R}^{3}$. Given $t \in \mathbf{R}$, define $\tau_{t}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ by

$$
\tau_{t}(x, y, z):=(x, y, z)+t v .
$$

Set

$$
\Omega_{\mathrm{basic}}^{k}\left(\mathbf{R}^{3}\right):=\left\{\alpha \in \Omega^{k}\left(\mathbf{R}^{3}\right): i(v) \alpha=0 \text { and } \tau_{t}^{*} \alpha=0 \text { for all } t \in \mathbf{R}^{3}\right\} .
$$

Define the twisted differential $\tilde{\mathrm{d}}: \Omega^{\bullet}\left(\mathbf{R}^{3}\right) \rightarrow \Omega^{\bullet}\left(\mathbf{R}^{3}\right)$ by

$$
\tilde{\mathrm{d}} \alpha=\mathrm{d} \alpha-i(v) \alpha
$$

(a) Prove that if $\alpha \in \Omega_{\text {basic }}^{\bullet}\left(\mathbf{R}^{3}\right)$, then $\tilde{\mathrm{d}} \alpha \in \Omega_{\text {basic }}^{\bullet}\left(\mathbf{R}^{3}\right)$.
(b) Prove that if $\alpha \in \Omega_{\text {basic }}^{\bullet}\left(\mathbf{R}^{3}\right)$, then $\tilde{\mathrm{d}} \tilde{\mathrm{d}} \alpha=0$.

