MTH 868 Fall 2017: Qualifying Exam

2017-12-14

Do **six** of the eight problems below. Clearly indicate which problems you have solved by ticking the corresponding box in the following table. *Do not tick more than six boxes.*

Problem #	Solved?
1	
2	
3	
4	
5	
6	
7	
8	

Problem 1. Consider the *n*-dimensional torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$. Given $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, write [x] for the equivalence class of x in T^n . Given an $n \times n$ -matrix with integral entries $A \in \mathbb{Z}^{n \times n}$, define $f_A \colon T^n \to T^n$ by

$$f_A([x]) \coloneqq [Ax].$$

Prove that for any $\omega \in \Omega^n(T^n)$ the following identity holds

$$\int_{T^n} f_A^* \omega = \det(A) \cdot \int_{T^n} \omega$$

Problem 2. Define $f: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$f(x, y, z) \coloneqq \begin{pmatrix} x^2 + y^2 + z^2 \\ xy - z^2 \end{pmatrix}.$$

Prove that $f^{-1}(1,0)$ is a regular submanifold of \mathbb{R}^3 .

Problem 3. Define $\beta \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$ by

$$\beta \coloneqq \frac{x \mathrm{d}y \wedge \mathrm{d}z + y \mathrm{d}z \wedge \mathrm{d}x + z \mathrm{d}x \wedge \mathrm{d}y}{(x^2 + y^2 + z^2)^{3/2}}.$$

- (a) **Prove** that β is closed, that is, $d\beta = 0$.
- (b) **Prove** that β is not exact, that is, there is no $\alpha \in \Omega^1(\mathbb{R}^3 \setminus \{0\})$ such that $d\alpha = \beta$.

Problem 4. Let *M* be a compact manifold. Let $E \xrightarrow{\pi} M$ be a vector bundle of rank *r*. **Prove** that there is a natural number $n \in \mathbb{N}$ and sections $s_1, \ldots, s_n \in \Gamma(E)$ such that, for all points $x \in M$,

$$\operatorname{span}\{s_1(x),\ldots,s_n(x)\}=E_x.$$

Problem 5. On $S^1 = \mathbf{R}/2\pi \mathbf{Z}$, consider the trivial vector bundle $E = S^1 \times \mathbf{C}$. In this situation: the space of sections $\Gamma(E)$ is $C^{\infty}(S^1, \mathbf{C})$, the space of *E*-valued 1-forms $\Omega^1(M, E)$ is $\Omega^1(M, \mathbf{C})$, and the gauge group $\mathscr{G}(E)$ is $C^{\infty}(S^1, \mathbf{C}^*)$.

Given $\lambda \in \mathbf{C}$, define a covariant derivative ∇_{λ} by the following formula

$$\nabla_{\lambda} \coloneqq d + \lambda \cdot d\theta.$$

Given $\lambda, \tilde{\lambda} \in \mathbb{C}$, prove that ∇_{λ} is gauge equivalent to $\nabla_{\tilde{\lambda}}$ if and only if $\lambda - \tilde{\lambda} \in i\mathbb{Z}$.

Problem 6. Compute the de Rham cohomology of the open subset $U \subset \mathbf{R}^2$ given by the gray-shaded region below:

Hint: Use the Mayer–Vietoris Theorem and the homotopy invariance of de Rham cohomology.

Problem 7. Consider the circle $S^1 = \mathbf{R}/2\pi \mathbf{Z}$. Given $\theta \in \mathbf{R}$, denote by $[\theta]$ the equivalence class of θ in S^1 . Define $A: S^1 \to \text{Hom}(\mathbf{R}^3, \mathbf{R}^2)$ by

$$A([\theta]) \coloneqq \begin{pmatrix} \cos(\theta) & \sin(\theta) & \sin(\theta)^2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Set

$$E := \left\{ ([\theta], v) \in S^1 \times \mathbf{R}^3 : A([\theta])v = 0 \right\}$$

and define $\pi: E \to S^1$ by

$$\pi([\theta], v) \coloneqq [\theta].$$

Prove that $E \xrightarrow{\pi} S^1$ can be given the structure of a vector bundle.

Problem 8. Set

$$v := (2, 3, 5) \in \mathbb{R}^3$$
.

By slight abuse of notation, we will also use v to denote the corresponding constant vector field on \mathbb{R}^3 . Given $t \in \mathbb{R}$, define $\tau_t \colon \mathbb{R}^3 \to \mathbb{R}^3$ by

$$\tau_t(x, y, z) \coloneqq (x, y, z) + t\upsilon.$$

Set

$$\Omega_{\text{basic}}^{k}(\mathbf{R}^{3}) \coloneqq \left\{ \alpha \in \Omega^{k}(\mathbf{R}^{3}) : i(\upsilon)\alpha = 0 \text{ and } \tau_{t}^{*}\alpha = 0 \text{ for all } t \in \mathbf{R}^{3} \right\}.$$

Define the twisted differential $\tilde{d}\colon\,\Omega^{\bullet}(\mathbf{R}^3)\to\Omega^{\bullet}(\mathbf{R}^3)$ by

$$\tilde{\mathrm{d}}\alpha = \mathrm{d}\alpha - i(v)\alpha.$$

- (a) **Prove** that if $\alpha \in \Omega^{\bullet}_{\text{basic}}(\mathbb{R}^3)$, then $\tilde{d}\alpha \in \Omega^{\bullet}_{\text{basic}}(\mathbb{R}^3)$.
- (b) Prove that if $\alpha \in \Omega^{\bullet}_{\text{basic}}(\mathbb{R}^3)$, then $\tilde{d}\tilde{d}\alpha = 0$.