1. (15 points) Let $A, B \in \mathbb{C}^{m \times m}$ be arbitrary matrices. Show that

$$
\|A B\|_{F} \leq\|A\|_{2}\|B\|_{F}
$$

where $\|.\|_{2}$ and $\|.\| \|_{F}$ denote the 2-norm and Frobenius norm, respectively.
2. (15 points) Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$. Show that $A^{*} A$ is nonsingular if and only if $A$ has full rank.
3. (15 points) Answer the following questions about properties of matrices.

- Let $A, B \in \mathbb{C}^{n \times n}$, with $A$ nonsingular and $\left\|A^{-1}\right\|\|B\|=q<1$. Show that $A+B$ is nonsingular, i.e., invertible.
- Let $A \in \mathbb{C}^{n \times n}$ be skew-Hermitian, i.e., $A^{*}=-A$. Show that the matrix $I+A$ is nonsingular and that $(I+A)^{-1}(I-A)$ is unitary.

4. (15 points) Let $P \in \mathbb{C}^{m \times m}$ be a projector. Show $P$ is orthogonal if and only if $P=P^{*}$.
5. (10 points) Suppose A is an invertible $202 \times 202$ matrix with $\|A\|_{2}=100$ and $\|A\|_{F}=101$. Give the sharpest possible lower bound on the 2-norm condition number $\kappa(A)$.
6. (15 points) Prove Gerschgorin's disk theorem: Let $A \in \mathbb{C}^{m \times m}$ with entries $\left\{a_{i j}\right\}$ and let $r_{i}=\sum_{j \neq i}\left|a_{i j}\right|$. Let $D_{i}$ be the closed disk in $\mathbb{C}$ with center $a_{i i}$ and radius $r_{i}$. If $\lambda$ is an eigenvalue of $A$, then $\lambda \in \cup_{i} D_{i}$; in other words, $\lambda$ lies within at least one of the disks $D_{i}$.
7. (15 points) Suppose the Arnoldi iteration is executed for a particular $m \times m$ matrix $A$ and vector $b$ until at some step $n$, an entry $h_{n+1, n}=0$ is encountered.

- Show how the equality $A Q_{n}=Q_{n+1} \tilde{H}_{n}$ can be simplified in this case. Recall that $Q_{n}$ is an $m \times n$ matrix whose columns are the first $n$ columns of $Q$ in $A Q=Q H$, where $H$ is a Hessenberg matrix. In addition, $\tilde{H}_{n}$ is the $(n+1) \times n$ upper-left section of $H$.
- Show that $\mathcal{K}_{n}$ is an invariant subspace of $A$, i.e. $A \mathcal{K}_{n} \subseteq \mathcal{K}_{n}$, where $\mathcal{K}_{n}$ is the $n^{\text {th }}$ Krylov subspace, which is the span of $\left\{b, A b, . . A^{n-1} b\right\}$ ?

