1. (15 points) Let $A,B\in \mathbb{C}^{m\times m}$ be arbitrary matrices. Show that

 $||AB||_F \le ||A||_2 ||B||_F,$

where $||.||_2$ and $||.||_F$ denote the 2-norm and Frobenius norm, respectively.

2. (15 points) Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$. Show that A^*A is nonsingular if and only if A has full rank.

- 3. (15 points) Answer the following questions about properties of matrices.
 - Let $A, B \in \mathbb{C}^{n \times n}$, with A nonsingular and $||A^{-1}||||B|| = q < 1$. Show that A + B is nonsingular, i.e., invertible.
 - Let $A \in \mathbb{C}^{n \times n}$ be skew-Hermitian, i.e., $A^* = -A$. Show that the matrix I + A is nonsingular and that $(I + A)^{-1}(I A)$ is unitary.

4. (15 points) Let $P \in \mathbb{C}^{m \times m}$ be a projector. Show P is orthogonal if and only if $P = P^*$.

5. (10 points) Suppose A is an invertible 202×202 matrix with $||A||_2 = 100$ and $||A||_F = 101$. Give the sharpest possible lower bound on the 2-norm condition number $\kappa(A)$.

6. (15 points) Prove Gerschgorin's disk theorem: Let $A \in \mathbb{C}^{m \times m}$ with entries $\{a_{ij}\}$ and let $r_i = \sum_{j \neq i} |a_{ij}|$. Let D_i be the closed disk in \mathbb{C} with center a_{ii} and radius r_i . If λ is an eigenvalue of A, then $\lambda \in \bigcup_i D_i$; in other words, λ lies within at least one of the disks D_i .

- 7. (15 points) Suppose the Arnoldi iteration is executed for a particular $m \times m$ matrix A and vector b until at some step n, an entry $h_{n+1,n} = 0$ is encountered.
 - Show how the equality $AQ_n = Q_{n+1}\tilde{H}_n$ can be simplified in this case. Recall that Q_n is an $m \times n$ matrix whose columns are the first n columns of Q in AQ = QH, where H is a Hessenberg matrix. In addition, \tilde{H}_n is the $(n+1) \times n$ upper-left section of H.
 - Show that \mathcal{K}_n is an invariant subspace of A, i.e. $A\mathcal{K}_n \subseteq \mathcal{K}_n$, where \mathcal{K}_n is the n^{th} Krylov subspace, which is the span of $\{b, Ab, ..A^{n-1}b\}$?