Name:

Standard exam rules apply:

- You are not allowed to give or receive help from other students.
- All electronic devices must be turned off for the duration of the test and stowed. This includes phones, pagers, laptops, tablets, e-readers, and calculators.
- The only things allowed on your desk are:
- Your writing implements, including also corrector fluids or erasers or similar.
- A water bottle or other drink.
- This booklet.
- This exam lasts from 2:oopm-4:oopm.
- Only one student may take a bathroom break at any given time.

> INSTRUCTOR USE ONLY:

Q\#	pts	MAX
1 A		2
1 B		4
${ }_{1 \mathrm{C}}$		4
2		4
3A		4
3B		4
4		4
5		4
6 A		40

Q1. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded open set with C^{1} boundary. In this question you will analyze the damped wave equation (also called the telegraph equation) on $(0, \infty) \times \Omega$:

$$
\begin{equation*}
\square \phi=\partial_{t} \phi \tag{DW}
\end{equation*}
$$

(recall that $\square=-\partial_{t t}^{2}+\Delta$).
A. (2pts) Let ${ }^{\left(\partial_{t}\right)} \mathcal{J}$ be the energy-momentum current associated to ∂_{t} for the function ϕ, which we assume to solve (DW). Write down an expression for the divergence $\operatorname{div}{ }^{\left(\partial_{t}\right)} \mathcal{J}$ that does not depend on second derivatives of ϕ. (You don't need to show work.)
B. (4pts) Suppose $\phi \in C^{2}([0, \infty) \times \bar{\Omega})$ is a solution to $\overline{\mathrm{DW}}$, satisfying the boundary conditions

$$
\begin{equation*}
\phi(t, y)=0, \quad t \in[0, \infty), y \in \partial \Omega \tag{DB}
\end{equation*}
$$

Prove that, whenever $0 \leq t_{1}<t_{2}$,

$$
\begin{equation*}
\int_{\Omega}\left|\partial_{t} \phi\left(t_{1}, x\right)\right|^{2}+\left|\nabla \phi\left(t_{1}, x\right)\right|^{2} \mathrm{~d} x \geq \int_{\Omega}\left|\partial_{t} \phi\left(t_{2}, x\right)\right|^{2}+\left|\nabla \phi\left(t_{2}, x\right)\right|^{2} \mathrm{~d} x \tag{EI}
\end{equation*}
$$

(Hint: use the energy method.)
C. (4pts) Suppose $\phi, \psi \in C^{2}([0, \infty) \times \bar{\Omega})$ are solutions to D with boundary conditions (DB). Suppose further that $\phi(0, x)=\psi(0, x)$ and $\partial_{t} \phi(0, x)=\partial_{t} \psi(0, x)$ for every $x \in \Omega$. Prove that $\phi \equiv \psi$ on $[0, \infty) \times \bar{\Omega}$.
(space for work on Q1)

Q2. (6pts) Let Ω be a bounded open set on \mathbb{R}^{d}. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a strictly decreasing function. Prove that, if u_{1} and u_{2} are two C^{2} solutions to the differential equation

$$
-\Delta u=f(u)
$$

such that $u_{1}=u_{2}$ on $\partial \Omega$, then $u_{1} \equiv u_{2}$ on Ω.
(Hint: approach by contradiction. If the two were not equal, consider the open subset $\Omega_{+}:=\left\{u_{1}>u_{2}\right\}$. Notice that necessarily $u_{1}-u_{2}=0$ on $\partial \Omega_{+}$.)
(space for work on Q2)

Q3. Consider the following Hamilton-Jacobi equation:

$$
\begin{equation*}
\partial_{t} u+\left(\partial_{x} u\right)^{3}=0 \tag{HJ}
\end{equation*}
$$

A. (4pts) Suppose $u \in C^{1}([0, T] \times \mathbb{R})$ is a solution to H. Suppose further there exists $x_{0} \in \mathbb{R}$ such that $u(0, x)=0$ for every $x \leq x_{0}$. Prove that $u(t, x)=0$ for every $t \in[0, T]$ and $x \leq x_{0}$.
B. (4pts) Prove that there does not exist $u \in C^{1}([0, \infty) \times \mathbb{R})$ solving HJ such that $u(0, x)=x^{3}$.
(space for work on Q_{3})

Q4. (4pts) Let Ω be a bounded open subset of \mathbb{R}^{d} with C^{1} boundary. Suppose $u \in C^{2}([0, T] \times \bar{\Omega})$ solves the initial-boundary value problem

$$
\partial_{t} u-\Delta u+|\nabla u|^{2} u=0
$$

with

$$
\begin{cases}u(0, x)=0, & x \in \Omega \\ u(t, y)=0, & t \in[0, T], y \in \partial \Omega\end{cases}
$$

Prove that $u \equiv 0$.
(space for work on Q_{4})

Q5. (4pts) Let Ω be an open, bounded subset of \mathbb{R}^{d}, and suppose $f: \Omega \rightarrow \mathbb{R}$ is such that $f(x)>\epsilon>0$ for all $x \in \Omega$. Suppose $u \in C^{2}(\bar{\Omega})$ solves

$$
-\Delta u+f u=0
$$

Prove that

$$
\max _{\bar{\Omega}} u \leq \max \left\{0, \max _{\partial \Omega} u\right\}
$$

(space for work on Q_{5})

Q6. Let $f \in C^{0}\left([0, \infty) \times \mathbb{R}^{d}\right)$ be bounded, non-negative, and compactly supported. Consider the initial value problem

$$
\begin{gather*}
\partial_{t} u-\Delta u=f \tag{HI}\\
u(0, x)=0 \tag{1}
\end{gather*}
$$

A. (4pts) Prove that there exists a bounded solution of (HI).
B. (4pts) Suppose there exists some $\left(t_{0}, x_{0}\right) \in(0, \infty) \times \mathbb{R}^{d}$ such that $f\left(t_{0}, x_{0}\right)>0$. Prove that $u(t, x)>0$ for every $x \in \mathbb{R}^{d}$ and every $t>t_{0}$.
(space for work on Q6)

