AUGUST 2018 QUALIFYING EXAM: PDE I

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Suppose $u \in C^{2}((0, T] \times \Omega) \cap C^{0}([0, T] \times \bar{\Omega})$ solves

$$
\partial_{t} u-\Delta u=\sin (\pi u)
$$

and is such that $u(0, x) \geq 1$ for every $x \in \Omega$, and $u(t, x)=1$ for every $t \in(0, T)$ and $x \in \partial \Omega$.
a) (4pts) Prove that, for every $\epsilon \in(0,1)$, the function $u>\epsilon$ on $[0, T] \times \bar{\Omega}$.
b) (4pts) Show that there is an unique solution satisfying $u(0, x) \equiv 1$. Write down the solution explicitly.
2. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $z h(z) \geq 0$. Let D denote the domain $\{(t, x) \in(0, T) \times(-1,1)\} \subset \mathbb{R} \times \mathbb{R}$. Suppose $\phi \in C^{2}(\bar{D})$ solves the initial-boundary value problem

$$
\begin{gathered}
-\partial_{t t}^{2} \phi+\partial_{x x}^{2} \phi=h\left(\partial_{t} \phi\right) \\
\left.\left(\phi, \partial_{t} \phi\right)\right|_{t=0}=(f, g) \\
\phi(t,-1)=\phi(t, 1)=0
\end{gathered}
$$

a) (4pts) Let $E(t):=\int_{-1}^{1}\left|\partial_{t} \phi(t, x)\right|^{2}+\left|\partial_{x} \phi(t, x)\right|^{2} \mathrm{~d} x$. Prove that $E(t)$ is decreasing in t.
b) (4pts) Suppose $f(x)=g(x)=0$ when $x \geq 0$. Prove that $\phi(t, x)=0$ whenever $x \geq t \geq 0$.
3. (4pts) Prove the following stronger version of Liouville's theorem:

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a harmonic function. If there exist $D_{1}, D_{2}>0$ and $\epsilon \in[0,1)$ such that for every $x \in \mathbb{R}^{n}$

$$
|u(x)| \leq D_{1}|x|^{\epsilon}+D_{2}
$$

then u is constant.
4. Consider the Poisson equation $-\Delta u=f$ on \mathbb{R}^{n}, where $f \in C_{c}^{2}\left(\mathbb{R}^{n}\right)$ is given.
a) (4pts) When $n \geq 3$, prove that for every non-negative f, there exists an unique non-negative C^{2} solution to the Poisson equation $-\Delta u=f$ on \mathbb{R}^{n} with the property that $\lim _{|x| \rightarrow \infty} u(x)=0$. (Your emphasis should be on the non-negativity and uniqueness of the solution.)
b) (4pts) When $n=2$, prove that if f is non-negative and non-trivial, any C^{2} solution to the Poisson equation is unbounded. (You may use the version of Liouville's theorem stated in question 3.)
5. (4pts) Let $h \in C^{\infty}(\mathbb{R})$ be such that at every $y \in \mathbb{R}$, there exists some natural number $k(y) \geq 1$ such that the k th derivative $h^{(k)}(y) \neq 0$. Prove that the only $C^{1}(\mathbb{R} \times \mathbb{R})$ solutions to

$$
\partial_{t} u+h(u) \partial_{x} u=0
$$

are the constant solutions.
6. (4pts) Let $u \in C^{4}([0, T] \times \bar{\Omega})$, where $\Omega \subset \mathbb{R}^{n}$ is open, bounded, and has C^{1} boundary. Suppose u solves the biharmonic heat equation

$$
\begin{gathered}
\partial_{t} u+\Delta \Delta u=0 \\
u(t, x)=0 \quad \text { on }[0, T] \times \partial \Omega \\
\partial_{\nu} u(t, x)=0 \quad \text { on }[0, T] \times \partial \Omega
\end{gathered}
$$

Show that if $u(T, x)=0$ for all $x \in \Omega$, then $u \equiv 0$ on $[0, T] \times \Omega$.
(Hint: letting $E(t)=\int_{\Omega}|u(t, x)|^{2} \mathrm{~d} x$, you can start by showing that the function $t \mapsto \ln E(t)$ is convex.)

