AUGUST 2018 QUALIFYING EXAM: PDE I

1. Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Suppose $u \in C^2((0,T] \times \Omega) \cap C^0([0,T] \times \overline{\Omega})$ solves

$$\partial_t u - \Delta u = \sin(\pi u)$$

and is such that $u(0, x) \ge 1$ for every $x \in \Omega$, and u(t, x) = 1 for every $t \in (0, T)$ and $x \in \partial \Omega$.

a) (4pts) Prove that, for every $\epsilon \in (0, 1)$, the function $u > \epsilon$ on $[0, T] \times \overline{\Omega}$.

b) (4pts) Show that there is an *unique* solution satisfying $u(0,x) \equiv 1$. Write down the solution explicitly.

2. Let $h : \mathbb{R} \to \mathbb{R}$ satisfy $zh(z) \ge 0$. Let *D* denote the domain $\{(t, x) \in (0, T) \times (-1, 1)\} \subset \mathbb{R} \times \mathbb{R}$. Suppose $\phi \in C^2(\overline{D})$ solves the initial-boundary value problem

$$-\partial_{tt}^{2}\phi + \partial_{xx}^{2}\phi = h(\partial_{t}\phi)$$
$$(\phi, \partial_{t}\phi)\big|_{t=0} = (f,g)$$
$$\phi(t, -1) = \phi(t, 1) = 0$$

- a) (4pts) Let $E(t) := \int_{-1}^{1} |\partial_t \phi(t, x)|^2 + |\partial_x \phi(t, x)|^2 dx$. Prove that E(t) is decreasing in t. b) (4pts) Suppose f(x) = g(x) = 0 when $x \ge 0$. Prove that $\phi(t, x) = 0$ whenever $x \ge t \ge 0$.

3. (4pts) Prove the following stronger version of Liouville's theorem: Let $u: \mathbb{R}^n \to \mathbb{R}$ be a harmonic function. If there exist $D_1, D_2 > 0$ and $\epsilon \in [0, 1)$ such that for every $x \in \mathbb{R}^n$

$$|u(x)| \le D_1 |x|^{\epsilon} + D_2$$

then *u* is constant.

4. Consider the Poisson equation $-\Delta u = f$ on \mathbb{R}^n , where $f \in C^2_c(\mathbb{R}^n)$ is given.

a) (4pts) When $n \ge 3$, prove that for every non-negative f, there exists an unique non-negative C^2 solution to the Poisson equation $-\Delta u = f$ on \mathbb{R}^n with the property that $\lim_{|x|\to\infty} u(x) = 0$. (Your emphasis should be on the non-negativity and uniqueness of the solution.)

b) (4pts) When n = 2, prove that if f is non-negative and non-trivial, any C^2 solution to the Poisson equation is unbounded. (You may use the version of Liouville's theorem stated in question 3.)

5. (4pts) Let $h \in C^{\infty}(\mathbb{R})$ be such that at every $y \in \mathbb{R}$, there exists some natural number $k(y) \ge 1$ such that the *k*th derivative $h^{(k)}(v) \neq 0$. Prove that the only $C^1(\mathbb{R} \times \mathbb{R})$ solutions to

$$\partial_t u + h(u) \partial_x u = 0$$

are the constant solutions.

6. (4pts) Let $u \in C^4([0,T] \times \overline{\Omega})$, where $\Omega \subset \mathbb{R}^n$ is open, bounded, and has C^1 boundary. Suppose usolves the biharmonic heat equation

$$\partial_t u + \triangle \Delta u = 0$$
$$u(t, x) = 0 \quad \text{on } [0, T] \times \partial \Omega$$
$$\partial_y u(t, x) = 0 \quad \text{on } [0, T] \times \partial \Omega$$

Show that if u(T, x) = 0 for all $x \in \Omega$, then $u \equiv 0$ on $[0, T] \times \Omega$. (*Hint: letting* $E(t) = \int_{\Omega} |u(t,x)|^2 dx$, you can start by showing that the function $t \mapsto \ln E(t)$ is convex.)

Date: August 23, 2018.