Given a von Neumann algebra M equipped with a trace, any self-adjoint operator in M can be thought of as a non-commutative random variable. For an n-tuple X of such operators, the free Stein information of X is a free probabilistic quantity defined by the behavior of a non-commutative Jacobian on the polynomial algebra generated by entries of X. It is a number in the interval [0,n] and its value can provide information about the entries of X as well as the von Neumann algebra they generate. In this talk, I will discuss these and other properties of the free Stein information and consider a few examples where it can be explicitly computed. This is based on joint work with Ian Charlesworth.