Department of Mathematics

Student Arithmetic Geometry Seminar

  •  Nick Rekuski, MSU
  •  Fargues-Fontaine Curve: Part I
  •  04/12/2019
  •  2:00 PM - 4:00 PM
  •  C204A Wells Hall

There is a close analogy between function fields over finite fields and number fields. In this analogy $\text{Spec } \mathbb{Z}$ corresponds to an algebraic curve over a finite field. However, this analogy often fails. For example, $\text{Spec } \mathbb{Z} \times \text{Spec } \mathbb{Z} $ (which should correspond to a surface) is $\text{Spec } \mathbb{Z}$ (which corresponds to a curve). In many cases, the Fargues-Fontaine curve is the natural analogue for algebraic curves. In this first talk, we will give the construction of the Fargues-Fontaine curve.



Department of Mathematics
Michigan State University
619 Red Cedar Road
C212 Wells Hall
East Lansing, MI 48824

Phone: (517) 353-0844
Fax: (517) 432-1562

College of Natural Science